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J. Phys. A: Math. Gen. 15 (1982) 1119-1129. Printed in Great Britain 

Kronecker products for SO(2p) representations 

G Girardit, A SciarrinoSO and P Sorbat11 
i LAPP, BP909 Annecy-le-Vieux, Cedex 74019, France 
$ CERN, CH1211, Geneva 23, Switzerland 

Received 18 July 1981, in final form 3 November 1981 

Abstract. A relatively simple algorithm for the decomposition of the product of two SO(2p) 
representations is presented. For this purpose, generalised Young tableaux are introduced 
and their product defined. 

1. Introduction 

There is today a renewal of interest by orthogonal groups in particle physics in the 
context of grand unified theories (for a review see, for example, Barbieri 1980, Ellis 
1980, Nanopoulos 1980). Among the appealing features that the SO(n) groups 
present, let us mention the absence of anomaly in their representations, and the 
property of SO(4n +2) groups to possess complex conjugate representations. A 
popular model is given by the SO(10) group which contains a 16-dimensional spinorial 
representation fitting exactly 16 left-handed elementary fermions of one family. 
Moreover, models built from SO(n), n > 10 groups have also been proposed in order to 
encompass more than one family of fermions (Gell-Mann 1980, Gell-Mann etal 1978). 
For the construction of grand unified models, one needs to know very carefully the 
mathematical properties of SO(n) Lie algebras as well as of their representations. In 
particular, the knowledge of the decomposition into irreducible representations of the 
Kronecker product of two SO(n) representations, which is in itself of mathematical 
interest, is very useful for the gauge model builder. The reduction of the Kronecker 
product of representations of O(n) groups has been studied by King (1975a, b) who 
simplified and generalised the pioneering work of Murnaghan (1938) and Littlewood 
(1950) based on the character theory and Schur functions. The formulae so obtained 
(King 1975a, b) are simple and amenable for practical calculations. Unfortunately, 
they cannot be used for the Kronecker product of SO(2n) representations since an 
irreducible representation (IR) of O(2n) may split into two irreducible ones under the 
restriction to SO(2n). This is not the case for orthogonal groups of odd order, the IR of 
O(2n + 1) being the IR of SO(2n + 1). 

With the introduction of difference characters (Murnaghan 1938), Butler and 
Wybourne (1969) were able to make an extension of Littlewood’s results to the SO(2n) 
case, at the price of rather complicated algorithms. During the completion of our work 
we received a preprint by Dehuai et al(1981) in which the results obtained in Butler and 
Wybourne (1969) and King (1975a, b) are presented in a systematic way. Let us 

D On leave of absence from Istituto di Fisica Teorica, Napoli, Italy. 
11 On leave of absence from Centre de Physique Thtorique, Marseille, France. 

0305-4470/82/041119 + 11$02.00 @ 1982 The Institute of Physics 1119 



1120 G Girardi, A Sciarrino and P Sorba 

mention another attempt to solve this problem recently proposed by Fischler (1980) 
based on Young tableau methods for classical groups: unlike for SU(n) groups, this 
method is not straightforward and generally leads to ambiguous results. In any case, the 
solutions proposed up to now for analysing the Kronecker product of SO(n) represen- 
tations require either the introduction of unusual objects (for the physicist) like Schur 
functions or complicated ways of handling usual objects like Young tableaux. 

The method we propose hereafter is obtained in a rather different way and seems to 
us simpler to use. Actually our method reduces to calculating, given two SO(2n) IR, a 
finite number of products of generalised Young tableaux (GYT). As will be defined, a 
GYT is a tableau which can include ‘negative’ boxes. The product of two GYT can be 
seen as a natural extension of the usual product of two SU(n) Young tableaux. Another 
nice feature of this technique lies in the fact that the rules for products involving vector 
or spinor representations are essentially the same. 

2. Representations of the O(n)  and SO(n) groups 

The Lie algebra of the O(n)  group can be realised with the help of n(n  - 1)/2 
infinitesimal generators Jii = -hi, Jij = J:f which satisfy the commutation relations 

(2.1) 

The Cartan (maximal Abelian) su5algebra can be chosen as generated by the p 
commutinp generators J12, J2j-1,2j, . . . , J2,-1,2, if n = 2 p  or n = 2 p  + 1, the eigenvalues 
of which, in a given irreducible representation, will yield the weight components. 

Any irreducible representation (IR) of the O(n) covering group can be labelled by 
the components of its greatest weight, i.e. by a set of p ,  if n = 2 p  or n = 2 p  + 1, positive 
numbers mi, i = 1,2,  . . . , p ,  satisfying ml 3 mz 3. . .3 m, 3 0. For a given represen- 
tation, these numbers are integers (true representations) or all half integers (spin 
representations). 

Let us now remind ourselves that any irreducible O ( 2 p  + 1) representation is 
irreducible under S O ( 2 p  + 1). This is also the case for an O ( 2 p )  representation with the 
last component of its greatest weight vanishing (m, = 0). The situation is rather 
different if the last index mp is non-vanishing. Indeed, in this last case, the O(2p) 
representation labelled by ( m l , .  . . , m,) splits into two IR of SO(2p) with the cor- 
responding greatest weight (ml, . . , , m,) and (ml, . . . , - m p ) :  two such representations 
are called conjugate. 

Another way of labelling an SO(n) representation, which appears naturally in 
Cartan’s construction, is often used. An SO(n) representation is then characterised by p 
non-negative integers related to the mi by the relations 

j =  1 , 2 , .  . . , p - 1  

[Jii, Jk / l  = i(Si/Jki + SjkJI i  + SikJjI + SjJik 

qj = mi - mj+l 

qp = mp-l + mp 

if n = 2 p  

and 

4i = mi -m. 1+1 

q, = 2m,. 

j = 1 ,2 ,  . . . , p - 1 if n = 2 p + 1 .  

Let us conclude this short section by recalling that the SO(4v + 2 )  representations 
( m l ,  . . . , mzU+l) with m2v+l # 0 are the only SO(n)  representations which are 
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complex-actually (ml, . . . , m2u+l)  is complex conjugate to (ml, . . . , -mzU+1), all the 
SO(4v + 2 )  representations with mzvcl = 0, as well as all the representations of SO(4v) 
or SO(2p + l), being real or quaternionic real. 

3. Generalised Young tableaux and their product 

With the O(n) IR (ml, . . . , m,) (n = 2p or n = 2p + 1) it is possible to associate a Young 
diagram with mi boxes in the ith row, i = 1,2, . . . , p if the IR considered is a true one, or 
with mi -3 boxes in the ith row if the IR is a spinorial one. 

What about an SO(2p) IR? If the last index m, P 0 there is of course no problem, but 
with its conjugate representation, if m,, # 0, we shall associate a new type of Young 
tableau, the last row of which being called a ‘negative row’. 

Such a tableau will be called the generalised Young tableau or GYT associated with 
the SO(2p) representation (ml, . . . , m,,). In the algorithm we shall propose, we are also 
led to define a wider class of GYT, i.e. in the context of SO(2p) groups, tableaux 
associated with the ordered set of positive, null and negative integers [a1,. . . , a,] 
satisfying a1 a a2 a. . . P a,, the introduction of such tableaux being related to the study 
of the different weights in an SO(2p) IR. In the following, we shall denote such a GYT by 
[, . . . , ] .  Let us insist on the fact that we can only associate an SO(2p) representation 
with such a GYT if a1 a.. .aaP- l  2la,lPO. As an example, in SO(8) the GYT 
[l, 0, -1, -21 will be represented as follows. 

~ 1 , - 1 , - 1 1 ~ ~ 3 , 2 , 1 1 = ~ 4 , 1 , 0 1  + 1 3 , 2 , 0 1  + l 3 , 1 , 1 1  + l 2 . 2 , 1 1  

Finally, let us point out that an SO(2p) GYT cannot have more than p rows. 
Now let us define the product of two GYT. For simplicity let us distinguish three 

(1) A completely arbitrary GYT [a], a1 P a2 P . . .a a,, multiplying a positive GYT 

(2)  A completely arbitrary GYT multiplying a negative GYT [ m ] ,  0 3 ml 3 m2 3 

(3) The product of two arbitrary GYT. 
If the product we have to consider concerns two tableaux with only positive rows 

(classical Young tableaux), then the product law will be the product law of two SU(p) 
Young tableaux, the only difference being that an SO(2p) GYT with p ‘positive rows’ 
[ml, . . . , m,] is not equivalent to the simplified one [ml - mp, . . . , mp-1 - m, 01. 

The multiplication law we define is a direct generalisation of the product of SU(n) 
Young tableaux (Lichtenberg 1970). 

kinds of products. 

[ m ] , m l a m 2 a . .  . a m , a O .  

. . . a m , .  
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Case 1 

Call the boxes in the first line a, those of the second line b and so on up to the pth line of 
the GYT [ m t , .  . . , m,] satisfying m l a . .  . a m p - 1 2 m p  20. Add to the other GYT 

[a1,. . , a,] with a1 2. . .a a, one box of [m] using all different ways so that one 
always gets a GYT. Note that the box added to the negative row of [a]  will cancel the 
box furthest left in this row. Then add a second to the obtained tableaux and so on 
using the usual SU(n) prescriptions.. 

As an illustration, let us consider the following product relative to SO(6). 

= [ 1 , 0 , - 1 . - 2  1 d 
Notice that the tableau 

does not exist since, before adding the b boxes, we would get the tableau 

i.e. [3, -1,O] which is not a GYT. 

Case 2 

Call the boxes of the last line a, those of the line just above b and so on up to the first line 
of GYT [m] .  Add to the GYT [ a ]  one box of [ m ]  in all the possible ways giving always 
a GYT. Then add a second and so on using the usual SU(n) prescriptions, but read 
from left to right and from down to up, to satisfy n i (a )  2 ni(b) . . . (instead of counting 
from right to left and from up to down). 

As an example 

Case 3 

The product of two arbitrary GYT can be done using the rules of cases 1 and 2 and the 
following recurrent formula (mi a 0, i = 1,2 ,  . . . , k ; mi < 0, j = k + 1, . . . , p) 

[mI+ = [ml,. . . , mk, 0, . . . ,01 
and { [ m ] }  denotes the set of GYT obtained from [ m ]  cancelling in all the possible ways 
one or more negative boxes with one or more positive boxes (‘contraction’) with the 
prescription that two symmetrical, i.e. boxes of the same row, (antisymmetrical, i.e. 
boxes of the same column) cannot be cancelled by two antisymmetrical (symmetrical) 
positive boxes. 
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Example: 

{[2,2, -1, -2]}=[2,1,0, -2]+[2,1, -1, -1]+[1,1,0, -1]+[1,0,0,0]+[2,0,0, -11. 

Each element of {[m]} has again to be decomposed into a positive and a negative 
part. It is clear that the decomposition of [a]x[m] will be obtained by repeating 
formula (3.1) a finite number of times. 

4. Rules for the product of two SO(2p) representations 

In the analysis of the Kronecker product of two SO(2p) IR we need to consider a subset 
of GYT of crucial usefulness. These are GYT with null and/or negative p labels, say 

LO, 0, * * 9 01; 
[O,. . . ,o,  -1, -1, -1, -11. 

L;k({ai}) = [O, . * . , -ai, -ai, . . . , -a& -a2, -a1, -a11 

[O, 0,. . . , -1, -13; [O, 0,. . . , -2, -21; 

We shall denote them in the following way: 

(4.1) 
where ai is a set of non-negative integers which satisfy X i  ai = k, ai 2ai+l .  The lower 
index p just reminds us of the total number of allowed labels, given the rank of the group 
under consideration. As an example in SO(8) we have 

L:(1) = [O, 0, -1, -13 L32) = [O, 0, -2, -21 Lj(l1) = [-1, -1, -1, -11. 
Let us now consider the product of two IR of S0(2p), [ml, . . . , m,] and [nl, . . . , n,]. 
If mp and np are both negative, it is simpler to make the product 
[ml ,  . . . , lm,l]O[nl, . . . , In,l] and then replace each term of the result by its conjugate. 
Also, as noted in the preceding section, there are two types of representations of the 
orthogonal groups: the true representations ( T )  and the spin representation (S); then 
there are three types of products to be considered: 

I I I 

i = l  i = L  i = l  
Ta @I Tb = 8 Ti s a x s b = @  ?;: Ta @sb = @ si. 

With an S-type representation, say Eml,. . . , m ] where mi are half integers, one 
associates a tableau [,U,. . . , ,U,] with p i  = mi -5. Given this procedure, in the case 
TaOSb one must add to each label of each term in the product decomposition, 
whereas in the case Sa @Ish one adds one unit in the same way to obtain the final result. 

Apart from this proviso the three types of product can be made with the same rules. 
The general formula can be written in the following compact form for the product of 

lP ’ 

IR [m]O[n] of SO(2p) 

[ , U l O [ V l  = z1 +Z2+Z3 

&=QE1 (L~kX[V])AX[~FL] 
k =O 

a+b-1  

k=a 

Q 

k = a + b  

E2 = 1 {(L2k [VI)A [ ~ 1 - ( L Z k  [ k I ) N A  [VI} (4.2) 

Z3= {(L2k x[V])AX[(U]-(L2a x [ ~ L ] ) N A X ( L 2 ( k - a ) X [ V ] ) A }  
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where a,  b are the smallest integers such that (LZa x [ p ] )  and (LZb x [ v ] )  gives a ‘not 
allowed’ GYT (see definition below) and Q is defined by 

2q 

i = l  
Q = C  ni for SO(4q) and SO(4q + 2). 

LZk stands for L;k({ai}) with the different possible {ai}  as defined in (4.1).  Only LZQ is 
unique and stands for 

2Q L, (. . . , -n3 - n4, -n3 - n4, - 1 t 1  - n2, -nl - n d .  
The integers pi and vi are defined by pi = mi and vi = ni (if [ m ] ,  [ n ]  are of 7’-type), 

ZY-1 ni = N GM = XY=’=, mi or if M = N such that np s m,; if mp = n,, np-l S mp-l and 
so on. The subscripts A and NA on the brackets mean that in the product of the GYT 

one only keeps the terms which fulfil some conditions fixed by [ n ]  and [ m ] .  In ( )A one 
keeps only the ‘allowed’ terms [ A ]  defined in the following way: 

(i) Zy=’=, ( l i l  c N (l i  = Ai 7’-type; Ii = Ai +$ S-type), and llil sz nl; 
(ii) if l1 or If,/ is equal to n l ,  [A] must not contain any label Ai such that lljl 2 n2. If 

one of the lj satisfies lljl = n2, then [ A ]  must not contain any label h k  such that Ilk1 2 n3, 

and so on; 

Moreover ( a )  an allowed GYT which appears more than once in a product of [v] with 
L;k({ai}), for a fixed set {ai}, has to be considered only once, and ( b )  an allowed GYT 
which appears twice in the product of [v] with L2pk with different sets {ai} (this is possible 
only if L2,k({ai}) has two more negative rows than L;k({a :})) has to be considered twice if 
and only if 

p.  I = m. I -$ , vi = ni -$ (if [ m ] ,  [ n ]  are of S-type). It is convenient to choose [ n ]  such that 

(iii) if ni = li, or ni = / lp - i+ l l ,  i = 1 ,  2 ,  . . . , p one must have IT;=’=, ni = H!-I fi. 

P 

I l i l<ZV-2(k-l) .  
i = l  

Finally, in the product ( x ) ~ ~  one will keep the ‘non-allowed’ GYT and the allowed 

The last prescriptions are: 
(i) in the final result one will keep only the GYT [A]  which can be associated with an 

(ii) IR which appear in the second term and not in the first term of the right-hand 

If a = l ,  in Z 3  of equation (4.2) one has to add, when it exists, the following 

GYT which should be neglected according to the above rules ( a )  and ( b ) .  

SO(2p)  I R  which is such that f l  2 12 a .  . . a I1,I; 

side of equation (4.2) have to be omitted. 

expression 
Q k - b - 1  

C ( - 1 ) I [ p  +L‘;(k-2)] x ( L ; I  x [ V I )  
k = l + b  r=O 

( 4 . 2 ~ )  

where [p +Lp2(k-‘)] is a GYT whose rows are the rows of [ p ]  plus the rows of a negative 
GYT f ; ( k - r ) ( { y i } )  which can be constructed by the following recurrence formula 
( k - r > 2 )  

p - r )  = 1 c (L; xL”-” ({Pi})) 
{ai) { P i )  

+I 1 ( - l ) i - k - r ( L ; y { y i } )  
1 { V I )  

L;=[o,o,. . . , -1 , -1 , -21.  

(4 .26)  
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The new terms given in ( 4 . 2 ~ )  are present only when the IR [m]  has, at least, as many 
null labels as the number of negative rows of Li(k-r). We give here the i i (k-r)  GYT for 
k - r  = 3,4 

6 L,=[O,.  . . ,0,  -1, -1, -1, -31; 

L: = [0, . . . , 0, -1, -1, -1, -1, -41; 

[0, . . . ,0,  -2, -2, -21 

[O,. . . ,0, -1, -2, -2, -31. 

Equation (4.2) looks very complicated at first sight, but it simplifies in practice. Let 
us remark that the second term for subtraction does not generally appear when m, # 0 
and that it can appear only for 

mp-l + m, < k np 80. 

symmetric or two completely antisymmetric SO(2p) representations if m B n 

SO(2P) 

In particular, very compact formulae can be given in the cases of two completely 

n 

[m,O,.. .,O]O[n,O,.. . , O ] =  x[m+n-k-21 ,  k,O ,..., 01 (4.3) 
f = O  k 

where k satisfies m + n -21 B 2k B 0 and (n - I )  2 k. 

[m, m,. . . , m]O[n,  n,. . . , n]= x [m +n -kl ,  m +n -kl , .  . . , m +n  -kq, m +n  -kq] 

[m, m,. . . , m]@[n, n, .  . . , -n] 
{ k i }  

= [m +n, m +n - k l ,  m +n -k l ,  . . . , m +n  - kq-l, m +n - kq--l, m -nl 
{ k i }  

SO(4q + 2) 

[m, m,.  . . , m]@[n, n,. . . , nl 

= [m+n,m+n-k l ,m+n-k l ,  ..., m+n-kq,m+n-k,] 
(kik 

[m, m,. . . , m]O[n, n,. . . , -n] 

= C  [m+n-k l ,m+n-k l ,  ..., m+n-kq,m+n-kq,m-n] 
{ k i }  

with the set {ki} satisfying 

2 n s k , ~ k ~ - ~ ~ . . . r k ~ a O .  

In order to illustrate the method, let us calculate in SO(10) the Kronecker product: 
[ l l 1 1 1 ] 0 [ $ $ $ $ ; ]  of respective dimensions 126 and 144. We shall operate on the 
spinorial representation, since N = $CM = 5 ,  and consider the product [p]@[v]  with 
pi = 1 ( i  = 1,2,. . . , 5 )  and vl = 1, v 2 = .  . . = v5=0. Since thequantity Q = X t l  ni =3, 
we shall have to consider the cases k = 0, 1,2,3. 
k = O  

[ 11 11 1 ] 0 [  10000] = [21111]. 

[OOO-1-1]0[10000] = [ 100-1 -1]* + [OOOO-1]*. 

k = l  
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Therefore 

[11111]@{[100-1-1]+ [OOOO-11) = [21100] + [11110]. 

In this case there are only allowed GYT. 

k = 2  

[0-1-1-1-1] @[ 10000] = [ 1-1-1 -1 -1]A + [00-1-1-1]A 

[000-2-2]@[ 10000] = [ ~ ~ ~ ~ ~ ~ ~ ] ~ ~ ~ [ ~ ~ ~ ~ ~ ~ ~ ] ~ ~  

Therefore, 

[ 11 1 11]@{[1-1-1-1-1]+ [OO-1-1-1]+ [OOO-1-21} 

= [20000] + [11000]+ [ 11 10-11. 

k = 3  

[o-1-1-2-2]@[1oooo] = [1-1-1-2-2]NA + [00-1-2-2]NA + [0-1-1-1-2].4. 

Therefore, 

[I11 11]@[0-1-1-1-2]A = [1000-1]. 

In this case there is no contribution from the NA diagrams. The final result is 
therefore, after adding 4 to each index of the obtained GYT: 

3 1 1 1 1  [1111110 [z z I 2 I1 
126 144 

- [ ~ ~ ~ ~ ~ ] + [ ~ ~ ~ 4 ~ ] + [ ~ ~ ~ ~ ~  5 1 1  11 
2 2 2  2 2 1 + [ Z I Z I 2 1  

+ [ I  I Z I 51 + [ I 5  z I -31 + [ I T  T 2 -21. 

- 2 2 2 2 2  

5280 8800 1440 720 
3 3 1 1 1  3 3 3 1  3 1 1 1  1 

- __ 
560 1200 144 

Let us finally consider one of the simplest products requiring the use of "A' terms in 
equation (4.2), i.e. the product of SO(8) representations 

[ 11001 0 [ 2  1001 

(of dimension 28 and 160 respectively) 

k = O  

[ 1 1001 0 [ 2 1001 = [3200] + [ 3 1 lo] + [22 lo] + [2 1 1 11 

k = l  

L2 x [1100] = [11-1-1]NA + [100-1],+ [0000]A 

{[100-1]+[0000]}x [2100] = [3000]+3[2100]+[211-1]+[1110] 

k = 2  
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The GYT [0, 0, -1, -11 has to be considered once due to prescription (6). Now, we have 
to add the “A’ terms: 

k = l  

Lz x [2100] = [211-1]NA + [200-1]A + [110-1]A + [1000]A 

[211-1]NA x [ 11001 [2100]. 

We see at once that for k = 2 the “A’ term gives no contribution since [2,1, -1, -11 
has two antisymmetrical boxes while (L2 X [ l ,  1, 0, o])A has at most one positive box. So 
we cannot get any GYT acceptable to prescription (i). 

The final result is: 

[1100] x [2100] 
28 160 

= [3200] + [3110]+{2210]+ [2111]+ [211-1]+ [3000] 
1400 1296 840 224 224 112 

+ 2[2100] + [ 11 lo] + [ 10001. 
2x160 56 8 

5. The weights of an SO(2p) representation 

In this section we give an outline of the proof of the rules given in 0 4. The proof comes 
from the use of the Gel’fand-Zeitlin (GZ) basis (Gel’fand et a1 1963) for SO(n) groups. 

The infinitesimal generators Jz i - l , z i ( i  = 1,2, . . . , p) t  of SO(2p) form a set of 
commuting Hermitian operators which are generally denoted by Hi and it is therefore 
possible to characterise (partially) a vector of the Hilbert space for any IR of SO(2p) by 
its set of eigenvalues Ai .  Each possible set of Ai can be considered as the components of a 
vector, usually called the weight vector in an ndimensional Euclidean space. It will be 
clear from the context whether we are referring to a vector in the Hilbert representation 
space or to a vector in the weight space being used to label the Hilbert vectors. The GZ 
vector is an eigenvector of the generators Jzi-1,zi (i = 2, . . . , p) only if it is an eigen- 
vector with the maximum possible eigenvalue of J z ~ - ~ , z ~ - z  and in this case the 
eigenvalue is just mi, the ith label of the IR. However, it is possible to diagonalise these 
generators and introduce vectors which are specified by a set of p integers or half 
integers (positive, null or negative) Ai(i = 1,2, . . . , p). (The complete set of weights for 
any IR of SO(n) can be derived from the greatest weight with the help of the Dynkin 
diagram (see for example, Slansky 1980). However, to our knowledge, there has never 
been written a compact and explicit form for the weights of any SO(2p) IR.) 

where mi are the integer or half integer numbers specifying the SO(2p)  IR, 1; are all 

t Our operators Ji, defined in 8 2 differ from the generators Zik of Gel’fand et a1 (1963) by a factor -i. With 
our definition, we get Hermitian operators. 
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possible non-negative integer numbers such that 

O < l k c m i  i =  1 , 2 , .  . . , n k = 1 , .  . . , n - i  
1; 2 lk+l 1; = o  for i +  k > n  1;; = o  

Aj-'=Sjl min(mi-li, mi- l - l i - l )+ki - '  

i t 1  mi - 1; 3 mi+l - l k - i ,  

j =  1 , 2 , .  . . , i - 1 
. .  k!-j = m. . - iii{ -max(m. 1-1 . - l i-1,  mi-j+l  - l j - j + * )  

1-1 

A: = k: = 0 ,  

the tilde on top of A:,-' means that we have to take any number in the following set of 
values 

Notice that in equation ( 5 . 1 )  we have to choose all the possible combinations of Ai-.'. So 
actually we have not only one value Ai for any i but a set of values. Our notation is 
slightly ambiguous, but it avoids overloading the formulae. If 1; = mi, one has to omit, 
in the expression for Ai+l ,  the term mi+l - 1';'". To the weight vectors specified by the set 
of Ai of equation (5.1) for all possible choices of 1; and A;-', one has to add the vectors 
specified by a set of A i  obtained in equation (5.1), changing the sign of an even number 
of Ai in all the possible ways. 

This pattern of eigenvalues is rather complicated, but there are general features 
which are worth emphasising. 

(i) The Ai are all integers or half integers depending on whether mi are integers or 
half integers. 

(ii) For any weight [A], the sum Z:='=, A, differs from M=Xy=l mi by 2 k ( k  = 
0, 1 ,  . . . , Q) where Q = Z:21 mi for SO(4q) or SO(4q + 2).  

(iii) There is, in general, a degeneracy in the eigenvectors except for the one 
specified by the greatest weight (that is, Ai = mi); there is no degeneracy when all the 
labels mi are equal or in the fundamental one [ l o .  . . 01. 

A!-j Aj - j -2 ,  . . .  , A:.-j-Zk;,-j. 
1 ,  

(iv) The sum over all the weights of the ith components A i  is zero for any fixed i. 
It should be stressed that the weight [ A ]  is not a complete set of labels since one has 

to know which IR the weight [A] belongs to and moreover there are, in general, several 
vectors in each IR labelled by the same set of [A]. It is convenient to define subsets, each 
being constituted of vectors, the sum of whose components is 

A r = M - 2 r  r = 0 , 1 ,  . . . ,  Q. (5 .2)  

If we associate the [mi] with the subset A. = M, it is possible to obtain all the vectors 
belonging to a subset A, by multiplying [mi] by the negative GYT introduced in § 4; the 
different subsets will then be different terms in the product of the GYT. 

The direct product of two IR [ m i ] @ [ n i ]  can be computed as follows: find the greatest 
weight of the direct product, i.e. mi + n i ;  calculate all the weights belonging to the 
IR [mi + nil; remove these weights from the set of all weights (Ai  + A i )  where Ai (A I )  are 
all the weights belonging to the IR [mi] ( [n i l ) ;  find the greatest weight in the remaining 
set and so on. This method, which seems very cumbersome in principle, can be 
expressed in the form of a simple algorithm of § 4 by the introduction of the GYT. 

The fact that we have to remove a set of weights which belongs to the IR already 
determined is taken into account by acting with J $ ~ ( { V ~ } )  on the smaliest IR and with the 
help of the subtraction term in the left-hand side of equation (4.2).  
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